
PARALLEL IMPLEMENTATION OF DEPTH-IMAGE-BASED RENDERING

Kun Xu, Xiangyang Ji, Ruiping Wang, Qionghai Dai

Department of Automation, Tsinghua University, Beijing, China

E-mails: xu-k05@mails.tsinghua.edu.cn, {xyji, rpwang, qionghaidai}@tsinghua.edu.cn

ABSTRACT

Depth-image-based rendering (DIBR) is a key step in 3D

video generation. Parallel implementation of DIBR is able

to improve rendering efficiency. General DIBR algorithms

include two steps: pixel shifting (warping) and hole filling.

There are memory correlations in these steps. To minimize

memory conflict, we employ an auxiliary matrix to record

maximum shifting distance. Implementation details on

OpenMP and CUDA are presented and experimental results

on GPU and multi-core CPU are compared.

Index Terms— DIBR, pixel shifting, hole-filling,

parallel computation.

1. INTRODUCTION

In 3DTV technology framework, Depth image-based-

rendering (DIBR) plays as a key component to generate

virtual views of a scene from a video and its corresponding

depth map [1]. It generates high-quality novel views and

requires less computational cost than model-based rendering

[2].

DIBR has to process a video shot pixel by pixel and

frame by frame. High definite video clips, however, have

millions of pixels in every frame, thus DIBR is a bottleneck

in many 3D applications. A solution is to implement DIBR

on parallel computing platforms.

There are several parallel computing systems. OpenMP

and graphics processing unit (GPU) are two mainstream

mode of parallel programming in PC and both of them could

install and work in general computational platform, such as

PC, laptop and portable devices. OpenMP is a compiler

directive for the shared storage systems. It is convenient to

transplant parallel code into C/C++ code. In recent years

GPU has become more and more popular in high

performance calculation (HPC) system. The performance

and capability of GPU is remarkably increased [3]. Compute

unified device architecture (CUDA) is a parallel

programming environment on NVIDIA’s GPU. It has been

applied in many fields, such as image and video processing,

bimolecular simulations and hydromechanics analysis.

In this paper, parallel implementation of DIBR on

OpenMP and GPU is presented. Section 2 introduces the

principle of DIBR and related work. Section 3 describes

parallel algorithm designing and the optimization scheme of

DIBR in parallel computing platforms. Section 4

demonstrates experiment result on OpenMP and CUDA and

compares the results. Finally, Section 5 concludes the paper.

2. PRINCIPLE OF DIBR

DIBR efficiency and quality are extremely correlated with

the quality of the depth map provided, therefore, some post-

processing technologies for depth map are also included in

DIBR. Zhang et al. employ symmetric and asymmetric

Gaussian filters to reduce texture artifacts and distortion in

vertical direction [4]. Experiment results from Shimono’s

group indicate that asymmetric Gaussian blur is able to

remove cardboard effect [5]. Quang etc. employ bilateral

filter and edge enhancement technique to optimize the

quality of depth maps [6]. With the high quality of depth

map, with little artifact and smooth object border, the DIBR

algorithm could be very simple, typically include two steps:

pixel shifting and hole filling.

Pixel shifting is a dual projection which maps original

image plane to 3D scene space defined by corresponding

depth map and then projects it to corresponding virtual view

plane. Fehn described the projections in warping in detail

[7]. In this paper, we consider binocular model, i.e.

generating left and right virtual views. The geometry is

shown in Fig. 1. Two viewpoints X0 and X1 are located on

the x-axis. The distance between X0 and X1 is L. The goal of

DIBR is to ensure each of the two viewpoints is correctly

displayed in the screen plane P. Points A and B are the

pixels in original image plane. Pixels with positive depth

value are out of the screen, such as point A’, or with

negative depth value are deep in the screen, such as point B’.

Pixel shifting step is used to calculate pixels’ shift distance

between virtual view and original image. For point A, the

virtual pixel in X0 and X1 is marked as AL and AR,

respectively. The shift distance for point A in X0 and X1 is

calculated by following equation:

𝑑AL = 𝐿AL ×
𝐷A

(𝑍−𝐷A)
 (1)

𝑑AR = 𝐿AR ×
𝐷A

(𝑍−𝐷A)
 (2)

Generally, Z is much larger than DA (Z>>DA). Then, LAL≈

LAR and dAL≈dAR. The equation (1) and (2) are simplified

by one equation:

𝑑AL = 𝑑AR = 𝑑A =
𝐿

2
×

𝐷A

𝑍
 (3)

The shift distance for other pixels (such as B) is simplified

as follows:

𝑑 =
𝐿

2
×

𝐷

𝑍
 (4)

Generally, obtain a better visual comfort level, we often

change the zero parallax plane (ZPP). The ZPP will impact

the whole shift distance in image. The equation (4) is

modified as:

𝑑 =
𝐿

2
×

𝐷−𝑍𝑃𝑃

𝑍
 (5)

where ZPP is between 0 and 255 for consistence with 8 bits

depth map. Therefore, the pixel value in virtual views and

the shift distance have the following relationship:

v(x,y) = v(x+d,y) (6)

In (6), v is the pixel value in color space. Therefore, the

pixel value in virtual views can be completely settled.

Fig. 1. Geometry of pixel shifting step.

The principle of disocclusion and hole-filling step is

shown as Fig. 2. In Fig. 2, pixel A and C are adjacent pixels.

C cannot be seen by view X0 that means A occludes C in

view X0. In that case, the pixels between A and C in view

X1 are holes, because these pixels have no corresponding

pixels in original image and they have no value in depth and

color. There are several methods to fill holes, such as

nearest neighbor, interpolation or In-painting algorithm.

Zhang et al. use information of averaging textures from

neighborhood pixels to fill holes [4].

Fig. 2. Geometry of hole-filling step.

3. PARALLEL ALGORITHM DESIGN

In this section, we present the implementation details of

DIBR on CUDA and OpenMP platforms.

3.1. Data Partition

DIBR must be processed pixel by pixel. In hole-filling step,

with the nearest pixel filling method, the pixel value is much

independent and there is little shared memory between each

thread. Therefore, it is enough to use uniform partition

method on image data in which each pixel is a minimum

division unit. Because of no communication between each

partition unit (thread), it is no need to design communication

strategy between units.

Since DIBR is implemented on different parallel

computing devices, we organize partitions into different

granularity for further computation. The arrangement format

of image data is a 2-D matrix. There are two viable data-

partition methods for matrix: striped partition and checker

board partition. In OpenMP, Processor is usually limited to

have 2 or 4 cores, thus we bind each block to a processor.

Consequently, we use striped way to organize data and

make block number equal to processor number. Each

separated block is bound to a processor. Nevertheless, GPU

is multi-core processor with scalable parallel architecture in

CUDA. Partitioning blocks into checker board is a better

way. We bind a square block to a stream multi-processor

and each pixel in block executes on a stream processor, so

that every pixel value in virtual views is calculated on

independent processor. As shown in Fig. 3, we partition

image data into striped blocks whose number is the same as

CPU number in OpenMP. DIBR is calculated by row in

block. In contrast, we partition image data into blocks with

16×16 pixels in each block (192 or 256 elements in a block

for the best) in CUDA.

Fig. 3. Methods of data partition. (a) and (b) are situations of 4 and

8 cores in OpenMP, respectively. (c) is situation in CUDA.

3.2. Pixel Shifting

Input data include video frames and corresponding depth

maps. A video frame is divided into 4 channels in order to

increase addressing speed in storage, and the depth map is

stored as float type in memory for higher computational

accuracy. As mentioned in Section 2, warping step is a

linear transforming process. The pixel shift distance

(disparity) is calculated based on (5) using the depth value

of the pixel with uniform coordinate. Then, the pixel value

is filled with (6).

Occlusion and hole will emerge when the depth values

between adjacent pixels are very different. For occlusions,

one location shifts with more than one pixel; and for holes,

no pixel shift to location in virtual view. Traditionally, we

execute disocclusion and hole-filling steps to solve such

problems. The disocclusion search pixel and fill pixel with

the maximum depth value. It means the filling operation will

be carried out multi-time until reach the maximum depth

location. That will seriously affect efficiency in parallel

computation.

We propose a method to improve the parallel

computation efficiency. We define a matrix M called ―Shift

Matrix‖ that pre-preserve shift distance of every pixel. We

fill M with the following equation:

m(x,y) = max⁡(D x−d,y) (6)

where m is the value of M in (x, y), and D is the depth value

in depth map. According to (6), a pixel with the maximum

depth in M will not fill with others. After this step, the

maximum shift distance between original image and virtual

view is confirmed. It can be predicted that the final location

of shift pixel and the filling can be executed only once. This

improvement could effectively reduce search time in

shifting step. Meanwhile, pixel in M with no value indicates

it is a hole.

Shifting operation for left eye view is illustrated in Fig. 4.

The pseudo code is given in Algorithm 1.

Fig. 4. The shift operation for left eye.

Algorithm 1 CUDA Parallel pixel-shifting (Left eye)

for each pixel (x, y) in block

location←y*width+x

d←abs(D[location]-D[location-1])

if m[location+d]≤D

m[location+d] ←D

v[location+d] ←v[location]

end if

end for

After this step, we get matrix M and half-finished virtual

view image. Pixels no value in M are holes and their color

value will be calculated in hole-filling step.

3.3. Hole-filling

Hole-filling step is an ill-posed problem. This means we

compute pixel value in the hole regions only based on

estimation. There are several methods for hole-filling. In

parallel camera system, using pixels in same row to

estimation value in hole is enough, we just consider nearest

neighbor and interpolation algorithm. Using nearest

neighbor is more efficient than interpolation and may

achieve good effect when holes are small or discontinuous.

Furthermore, it only needs to search one direction to fill

pixel but interpolation with two directions. Since the search

distance is unknown, two directions’ search is probable out

of block boundary and leads to memory conflict. In

conclusion, nearest neighbor method is in favor of parallel

computing.

In this step, the partition mode is the same as before.

According to M, pixel’s coordinates belong to holes are

known, which makes it is sample to calculate their color

value all alone. In left virtual view, the color value of pixel

on holes equals to the nearest pixel on the left whose value

exist in M, and the nearest pixel on the right for right view

in the same way. That means, for every hole-pixel, we

search M from the closest pixel to further pixel until find a

pixel with value in M. Then, we fill hole-pixel with the

value of it. In practice, OpenMP partitions image data into

blocks in strip that could do searching operation directly.

However, it is necessary to limit the search scope called

―warp distance‖ in CUDA. This scope is used to avoid

addressing length crossing block boundary and its value

could estimate by parameters in (5). The over-long

addressing leads to memory conflict and decreases

computing efficiency. The executing process of hole-filling

step in CUDA is described in Algorithm 2.

Algorithm 2 CUDA Parallel hole-filling (Left eye)

for each pixel (x, y) in block

location←y*width+x

if m[location] is NULL

for i from x-1 to x-warpDistance

if m[location+i] is not NULL

v[location] ←v[location+i]

m[location] ←m[location+i]

end if

end for

end if

end for

Finally, the boundary cutting process for image is

implemented to eliminate boundary discontinuity and visual

discomfort. The pixels in cut boundary are set to black. The

final virtual views are obtained then.

The matrix M has two functions in the algorithm. The

first is to avoid memory writing for multi-threads

simultaneously. The second is to provid reference mark in

hole-filling. We can directly fill holes with M.
In order to avoid pointer rollback and memory conflict,

the search direction in rows is unidirectional in virtual view

rendering. It is left-to-right in left views and right-to-left in

right views. Furthermore, uchar4 data type and shared

memory are used in CUDA to store temporary variable and

row data to fast computation speed.

The main contribution of this paper is: we propose a

DIBR algorithm for parallel computation, which is on-line

and of high quality. The algorithm is a common model, and

any field needs to generate virtual view with depth map can

execute this DIBR module. Meanwhile, Using GPU as

parallel processing unit, it can work on PC for family

multimedia applications.

4. EXPERIMENTAL RESULTS

We use the PC with Intel i7 920 CPU of 8-core 2.67GHz for

OpenMP programming and GPU of NVIDIA GTX 285 with

30 multiprocessors for CUDA to experiment for 5 terms,

including 1-core, 2-core, 4-core, 8-core CPU and GPU. In

addition, we test image data in 4 resolutions (640×480,

720×576, 1280×720, and 1920×1080). The higher resolution

represents larger amount of data volume. In pixel shifting

step, we choose L = 0.06m and Z = 0.5m for general

situation and the maximum depth value as ZPP which

makes all objects deep in the screen plane in equation (5).

The experimental results are shown in Fig. 5.

As shown in Fig. 5, after comparison with other

OpenMP results, the CUDA speed is 12-15 times faster by

1-core processor, and nearly 3 times by 8-core processor.

Because of limits of hardware structure, the 8-core running

time is not 2 times by 4-core. The running time of CUDA is

faster-than-real-time in almost 200 fps for 1080HD video,

which is totally enough for on-line video display.

Furthermore, the calculation time is linear-increased by

resolution (data volume), which indicates the computation

speed of DIBR is directly related with processor number.

Obviously, the proposed DIBR algorithm is executed

quickly in parallel computation system. The results in

OpenMP and GPU both have prominent enhancement. The

calculation in CUDA is much effective and has greater

performance than CPU.

The rendered virtual view is high-quality and has little

coarse artificial effect. Fig. 6 shows the original image,

depth map and virtual views using CUDA in 1920×1080

resolution.

5. CONCLUSION

In this paper, we propose a parallel DIBR scheme in PRAM

model and compare executing speed in multi-core CPU and

GPU. Experiment results show that parallel computation for

Fig. 5. Comparison running time of DIBR in OpenMP and CUDA.

Fig. 6. Original image, depth map and rendered virtual left/right

view in 1920×1080 Resolution. In DIBR, the parameters are L =

0.06m, Z = 0.5m and ZPP = 173, respectively.

the DIBR algorithm is effective. Whereas, because of using

the nearest neighbor method, the border of objects in image

is blocky artificial when depth map pixels are discontinuous

which causes holes in virtual view huge and hard to fill.

Next, we consider to apply filter which is parallelizable in a

fixed window, such as 3×3 or 5×5, to improve this distortion.

6. ACKNOWLEDGEMENT

This work was supported by the National Basic Research

Project of China (973 Program, No.2009CB320905), the

Project of NSFC (No.60933006 & No. 60972013).

7. REFERENCES

[1] C. Fehn, R.D.L. BARRE, and S. Pastoor. Interactive 3-

DTV—Concepts and Key Technologies. Proceedings of the

IEEE, Vol. 94, No. 3, pages 524–538. March 2006.

[2] M.H. Lee, and I.K. Park. Accelerating Depth Image-Based

Rendering Using GPU. MRCS 2006, LNCS 4105, pages

562–569. 2005.

[3] D.O. John, H. Mike, L. David, G. Simon, E.S. John, and C.P.

James. GPU Computing. Proceedings of the IEEE, vol. 96,

No. 5, pages 879–899. May 2008.

[4] L. Zhang, J.W. Tam. Stereoscopic Image Generation Based

On Depth Images for 3DTV. IEEE Transactions on

Broadcasting, Vol. 51, pages 191–199. June 2005.

[5] K. Shimono, W.J. Tam, C. Vazquez, F. Speranza, R. Renaud.

Removing the Cardboard Effect in Stereoscopic Images

Using Smoothed Depth Maps. Proc. SPIE, vol. 7524, pages

75241C1-75241C 8. 2010.

[6] H.N. Quang, N.D. Minh, J.P. Sanjay. Depth Image-based

Rendering with Low Resolution Depth. IEEE International

Conference on Image Processing, pages 553-556. 2009.

[7] C. Fehn. A 3D-TV Approach Using Depth-Image-Based

Rendering (DIBR). Proc. of Visualization, Imaging, and

Image Processing, pages 482-487. 2003.
1 2 3 4 5 6 7 8 9

x 10
6

0

10

20

30

40

50

60

70

80

Image data size (Bits)

R
u
n
n
in

g
 t
im

e
 (

m
s
/f
ra

m
e
)

GTX 285

CPU 1-Core

CPU 2-Core

CPU 4-Core

CPU 8-Core

